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PACS number(s): 12.38.Bx, 13.60.Fz, 13.60.Le

*Also Laboratory of Theoretical Physics, JINR, Dubna, Russian Federation



I. INTRODUCTION

Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive electroproduction
ocesses [1-7] require a generalization of usual parton distributions for the case when long-distance information is
cumulated in nonforward matrix elements (p — r | O(0, z} | p} | ;20 of quark and gluon light-cone operators. As
gued in Refs. [2,4,5], such matrix elements can be parametrized by two basic types of nonperturbative functions.
ith z taken in the lightcone “minus” direction, the double distributions (DD’s) F(x,y;t) specify the light-cone
lus” fractions zp* and yr* of the initial hadron momentum p and the momentum transfer r carried by the initial
rton. Though z is an integration variable, only one direction on the lightcone (specified by external momenta}
important for the lightcone-dominated processes. In other words, only the lightcone plus direction of the hadron
and r momenta are essential for such processes. By definition, the DD’s F(z,y;t) do not depend on the r*/p*
tio. On the other hand, treating the proportionality coefficient as an independent parameter: r* = (p*, one can
troduce an alternative description in terms of the nonforward parton distributions F¢(X; t) with X = 2+ y( being
e total fraction of the initial hadron momentum taken by the initial parton. The shape of the functions F¢(X;t)
plicitly depends on the parameter { characterizing the skewedness of the relevant nonforward matrix element.
his parametrization of nonforward matrix elements by F¢(X;¢) is similar to that proposed originally by X. Ji [1,3]
ho introduced off-forward parton distributions (OFPD's) H(z,£;t). The latter are close to functions considered
slier in Ref. [8]. The functions H(z,;t) have a simple relation to nonforward distributions (NFPD’s) F¢(X;¢),
hile the non-diagonal distributions F(z1,z2) discussed by Collins, Frankfurt and Strikman [7] essentially coincide
ith Femg,~2,(21;t = 0) (see Ref. (5] for details). The basic distinction between our approach and those of Refs.
,3,7) is that we treat the double distributions F(x,y;t) as the primary objects of the QCD analysis producing
ie nonforward distributions F¢{X;¢t) (and other types of distributions) after an appropriate integration.

The formalism of double distributions provides a rather effective tool for studying some general (e.g., spectral)
‘operties of NFPD’s and it allows to find analytic solutions of evolution equations {2,4,5]. Incorporating symmetries
'DD’s [9) imposes rather strong restrictions on realistic models of NFPD’s. A possible strategy for a self-consistent
odel building is to use nonperturbative or phenomenological approaches (MIT bag, quark models, QCD sum rule
eas, etc.) to construct double distributions at low normalization point and then evolve them to higher Q7 values.
The evolution equation for the nonsinglet quark double distribution was derived in Ref. [2], where its analytic
slution was also given. Evolution of the gluon distribution in pure gluodynamics was discussed in Refs. [4,5]. In
\is paper, we present also a full set of evolution equations for the fiavor-singlet case and derive a solution following
ie method of Refs. [2,4,5]. An independent study of singlet evolution based on our approach was performed in
ef. [10). Evolution equations for various versions of nonforward distributions can be found in [3,5,11-13]. A
)nvenient way to obtain the relevant evolution kernels is to use the universal light-ray evolution kernels [12-15].
he evolution of nonforward distributions was studied numerically in refs. {11,16,9,17,18].

In the present paper, we incorporate the spectral and symmetry properties of double distributions to construct
»yme simple models for DD’s. Using the relations between DD’s and NFPD’s/OFPD’s, we derive models for the
itter and show that using the formalism of double distributions we can easily explain characteristic qualitative
nd quantitative features of the evolution of nonforward distributions cbserved in Refs. [11,17].

II. BASIC DEFINITIONS

The kinematics of the amplitudes of the DVCS process v*(q)N(p) —+ 7(¢')N(¢') and hard electroproduction
*(g)N(p) - M(¢')N(#) can be specified by the initial nucleon momentum p, the momentum transfer r = p — p/
nd the momentum ¢’ of the final photon or meson. To get a Bjorken-type scaling limit, one should also keep the
wariant momentum transfer ¢ = r? small compared to the virtuality —Q? = (g — r)? of the initial photon and
he energy invariant p - ¢ = myv. The essential features of the hard electroproduction processes (DVCS included)
an be most easily demonstrated if we set ¢ = 0, p* = 0, r? = 0 and use p, ¢’ as the basic light-cone (Sudakov)
-vectors. It is easy to see that the requirement p'? = (p + r)* = p? reduces in this limit to the condition p-r =0
thich can be satisfied only if the two lightlike momenta p and r are proportional to each other: r = (p, where ¢
oincides with the Bjorken variable { = zp; = Q?/2(p- q). The latter satisfies the constraint 0 < zp; < 1. For
mall but finite ¢ and my, the momentum transfer r still must have a non-zero plus component rt = (pt. It also
nay have a transverse component r, .

In the pQCD factorization treatment of hard electroproduction processes, the nonperturbative information is
iccumulated in the nonforward matrix element (p — r|(0)¢(z) | p) (we use here ¢ as a generic notation for quark
1) or gluonic (G) fields). It depends on the relative coordinate z through three invariant variables (pz),(rz) and
2. In the forward case, when r == 0, one gets the usual parton distributions by Fourier transforming the light-cone

projected (i.e., 22 = 0) matrix element with respect to (pz). In the nonforward case, we can try to start with the
general Fourier representation

(- r19)(2) 1) = M((p2), r2), % tmd) = [ " & [ [ ooy une a2

with respect to all three z-dependent invariants. The Fourier transform p(z,y,v;t) can be called a triple distri-
bution. Note that the generous (—~00,00) limits for all three variables z,y, v serve for a most general function of
(zp), (2r) and 2. However, incorporating information that the Fourier transformation is written for a function M
given by Feynman integrals having specific cavsality properties, one arrives at more narrow limits: » runs from 0
to 00, z is between —1 and 1 while y is between 0 and 1 (this was proven in [5] for any Feynman diagram using the
approach of Ref. [19]). To interpret the z-variable as the fraction of the initial momentum p carried by the relevant
parton, it makes sense to separate integration over positive and negative z components and redefine z -+ —z and
y = 1 —y for the negative z component. After that, the z-variable is always positive and z and y are further
constrained by inequality 0 < z +y < 1 {2,5]. These spectral conditions can be summarized by the following
representation

{p—rlep(z)|p) = (2.2)
11
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in which &(z,y, v;t) and &(z,y,v;t) result from positive-z and negative-z components of p(x,y, v;t) respectively.
In particular, for quark operators, $(z,y,v; t) can be interpreted as the quark distribution while &(z,y,v;t) as the
antiquark one (a more detailed discussion is given in the next section). Similarly, y and (1-y) can be interpreted as
the fractions in which the momentum transfer r is shared among the two fields of the composite operator ¢(0)¢(2).
Finally, the v variable characterizes the virtuality of these fields. For a light-cone dominated process, the leading
term is given by the 2? — 0 limit of the nonforward matrix element, i.e. by zeroth moment of &(z,y,v;t) with
respect to v

Few= [ semnnod, (2.3)

where F(z,y;t) is the double distribution.

For a lightlike interval 22 = 0, one can treat z as having only light-cone “minus” component, and then the scalar
products (pz), (rz) project out the “plus” components of general (non-lightlike) momenta p and r. This allows to
give a parton interpretation of F(z,y;t) as a probability amplitude for the active parton to carry fractions zpt
and yr* of the plus components of the external momenta r and p. Though the momenta pt and rt can be treated
as proportional to each other r+ = (p*, p* and r* specify the “+”-momentum fiow in two different channels.
For r+ = 0, the net “+"-momentum flows only in the a-channel and the total “+”-momentum entering into the
composite operator vertex is zero. In this case, the matrix element is analogous to a distribution function. The
partons entering the composite vertex then carry the fractions z¢p* of the initial proton momentum (-1<z<1).
When z; is negative, we interpret the parton as belonging to the final state to secure that the integral always runa
over the segment 0 < z < 1. In this parton picture, the spectators take the remaining momentum (1 -=z)pt. On
the other hand, if the total “+”-momentum flowing through the composite vertex is r*, the matrix element has the
structure of a distribution amplitude in which the momentum r* splits into the fractions yr* and (1 -y)rt = grt
carried by the two fields that appear in the vertex. In a combined situation, when both pt and r* are nonzero, the
initial parton takes zp* + yr*, while the final one carries the momentum zp* — gr+. For r = 0, we get the forward
matrix element which is parametrized by the usual parton distributions f(z). This gives reduction relations [2,4,5]
connecting double distributions with the usual ones (see Eqs.(3.4),(3.5) below).

III. QUARK AND GLUON DISTRIBUTIONS

For quark operators, the double distributions are defined by the following representation {2):
(r',8' | $a(0)2E(0, 2; A)u(2) | p,9) 120 (3.1)

1 1
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FIG. 1. Parton picture for double distributions.

t parton helicity-averaged ones and by
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1 the parton helicity-sensitive case. Here and in what follows we adhere to the “bar” convention §j = 1-y,2=1-z,
te., for momentum fractions and use the “Russian hat” notation 7,z = 2. As usual, i(p', 8'),u(p, 5) are the Dirac
pinors for the nucleon. In this definition, we explicitly separate quark and antiquark components of the double
istribution. Note that such a separation is unambiguous: in the Fourier repr ion, it is completely determined
y the sign of the z-term in the exponential.

To clarify the physical meaning of separating the DD’s into two components, it is instructive to consider the
>rward limit r = 0 in which the matrix element is parametrized by usual parton densities, e.g., in the helicity
veraged case

1
(8| BalOZE(Q0, 2 A)a(2) | B} 120 = 6(p)2u(p) /D (=09 fu(2) - 09 (@) da. (33)

The exponential factors accompanying the quark and antiquark distributions reflect the fact that the field ¥(z)
wppearing in the operator $(0)...9(z) consists of the quark annihilation operator (quark with momentum zp
:omes into this point) and the antiquark creation operator (i.e., antiquark with momentum zp goes out of this
soint). To get the relative signs with which quark and antiquark distributions appear in these definitions, we should
iake into account that antiquark creation and annihilation operators appear in $(0) ... ¥(2) in the opposite order.
Comparing the expression (3.3) with the r = 0 limit of the definitions for DD’s, we obtain “reduction formulas”

relating the two components of the double distributions to the quark and antiquark parton densiti respectively:
1-2 1-2
[ REnt=0a=6e [ rert=0d=he). (3.4
and similarly for the helicity-sensitive case:
1-2 1-2
[ Gent=0a=onE [ Gewit=0dy=Anta). (35)
[ ]

The reduction formulas tell us that integrating the double distribution Fu(z,y;t = 0) over a vertical line z =const in
the (z, y)-plane, one gets the quark density f(z) while integrating its counterpart Fy(z,y; t = 0) gives the antiquark
density fa(z). This is an illustration of our statement that F,(z,y) and Fy(z,y) are independent functions. In
particular, Fo(z,y) contains the valence component (reducing to f¢/(x)) absent in Fa(z,v).

Our definitions (3.1), (3.2) reflect the results of the a-representation analysis [5] that the plus component of the
momentum of the particle (either quark or antiquark) going out of the hadronic blob can be written as zp* +yrt

4

with both z and y positive and = + y < 1. This is in full compliance with the parton model based expectation
that the initial hadron splits into an active parton and spectators which both carry positive fractions of its plus
momentum. To show the positivity of the plus momentum component for spectators, we should explicitly take
into account that, in the kinematics of DVCS and hard electroproduction processes, the plus component of the
momentum transfer r = p — p' is positive r+ = (p* > 0. Requiring that the plus component of the final hadron
momentum is also positive, we conclude that 0 < { < 1. Hence, 0 < z+y( <1 (since0<¢{<land0<z+y<1),
i.e., the plus component of the momentum carried by spectators is also positive. On the other hand, the parton
“going back” has the momentum whose plus component zpt — grt = (z — §j¢) may be either positive or negative,
depending on the relationship between z, y and (. When (z — §i() is negative, one may wish to interpret such a
parton as an antiparton leaving the hadron together with the initial parton. One should remember, however, that
the double distributions F(z,y;t) “know nothing” about the magnitude of the skewedness (: they are universal
functions describing flux of p* and r* independently of what the ratio r*/p* might be. As we explained above,
the quark DD's are unambiguously divided into two separate components Fy (z,y;t) and Fa(z,y;t), but there is
no further subdivision inside them based on interrelation between the values of z and y.
In a similar way, we can introduce double distributions for the gluons

(', | 220G (0 Eas(0, 7 A)GA,(2) | P8} | srmo 36)
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There are no “antigluons”, so the positive-z and negative-z parts are described by the same function. Note that
our definition of the gluon double distributions here differs from that used in our earlier papers [4,5,13] by an extra
factor of z in its right hand side. This form is more co ient for applications of the method of Refs. [2,4,5) to
solve evolution equations for double distributions in the singlet case. The choice made here corresponds to the
simplest form of the reduction formulas

1-2 1-z
[T Res=oa=n@ [ Gent=0d =240 38)
The flavor-singlet quark operators
Ny .
Oatus,v2) = 3 §[FawrBlus, v Aos) = 802120055 (0] (39)
a=1
and
Moyt .
AOqg(uz,vz) = 2 3 [w,,(uz)i'nE(uz,vz; A (vz) + Ya(v2)ims E(vz,uz; A)w,.(uz)] (3.10)
a=1

are expressed in terms of double distributions Fo(z,y;t), Gq(z,¥:1), etc. specified by
1o
(¢,8'] Og(uz,vz) | p, 8} 22=0 = (0, &')2ulp, a)/ / % (e“""(”)-ivv(rz)+izu(pz)—wu(n)
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- eizv(pz)—iyv(n)—ku(pz)—iu(u)) Fq(z,y; t) 0(1 +y< 1) dedy + qun —term, (341)

1
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+eizv(p:)—iﬁv(n)—o‘zu(nx)-—(u(r:)) Gq(z,y; t) 0(: +y< 1) drdy + “Pq”—term. (3.12)
They are given by the sum of “a + &” distributions:
Ny Ny
Fa(z,3it) = Y_(Falz,4:t) + Fa(=,3i1)) ; Golzyit) =Y (Galz,4it) + Galm,3it)).  (313)
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IV. EVOLUTION EQUATIONS

The QCD perturbative expansion for the matrix element in Eq.(2.1) generates In 2? terms. As a result, limit
-+ 0 is singular and the distributions F(z,y;t), etc., contain logarithmic ultraviolet divergences which require
additional R-operation characterized by some subtraction scale y: F(z,y;t) — F(=,y;t| ). The p-dependence
F(z,y;t|p) is governed by the evolution equation

dF-t—llR""F-0<1d 4.1
g Pl Iu)—/c/o ; (2.1 €,1) Fo(€,m; ¢ ) 0(6 + 9 < 1) dE d, (8]

ere a,b = G, Q. A similar set of equations, with kernels denoted by AR®(z,y;&,n) prescribes the evolution of
» parton helicity sensitive distributions G®(z,y; | u). Since the evolution kernels do not depend on ¢, from now
we will drop the t-variable from the arguments of F(z,y;t]|u) in all cases when this dependence is inessential
tewise, the y-variable will be ignored in our notation when it is not important).

Since integration over y converts Fo(z,y; t = 0| ) into the parton distribution function fa(z|p), whose evolution
Jescribed by the DGLAP equations {20-22]

1
u%f‘.(zlﬂ) = / %Pﬂ(xle;y)ﬂ(zlu)d{. 42)

¢ kernels R%¥(z,y; £,7; ) must satisfy the reduction relation

1-z
/o R*(z,u;¢,m:9)dy = %P"(z/&a)- (4.3)

iernatively, integration over  converts F,(z,y;t = 0| u) into an object similar to a meson distribution amplitude
1A), 80 one may expect that the result of integration of R}z, y;€,7;9) over z should be related to the kernels
verning the DA evolution [23,24]. For the diagonal kernels the relations are rather simple:

1-y
/o Rz, y;&,m;9)dz = VI (y,1;9) (4.4)

r the quark kernel and a slightly more complicated expression for the gluon kernel:
1-y ¢
/o i R6C(z,y;¢,m9)dx = VEC(y,m 0). (4.5)

he z/¢ factor appears because of the extra £ which was added in the definition of the gluon DD by analogy
ith the definition for the usual gluon densities. The nondi | kernels R9 and R9€ obey more complicated
duction formulas (see the Appendix).

The reduction properties of the diagonal evolution kernels can be illustrated using the explicit form of the
Q-kernel:

RO (e, 1,m39) = 22Cr 1 {000 < o/6 < minfy/n,/9)) = 560~ =/O8(w =) (46)

80<z/e<x/ETL 1 . g
$ OISV [y gy Lo - 9im)] 280 - /000 - [ 755

ere the last (formally divergent) term, as usual, provides the regularization for the 1 /(z— &) singularities present in
1 kernel. This singularity can be also written as 1/(n—y) for the term containing §(z/§ —y/n) and as 1/(7j - §) for
1e term with &(z/£— /7). Depending on the chosen form of the singularity, incorporating the 1 (1—2) terminto a
lus-type distribution, one should treat z as /£, y/n or §i/fj. One can check that integrating R¥9(z,y; £,n; ) over
or z, gives the DGLAP splitting function P99(z/¢; g) and the BL evolution kernel V99(y,n;g) , respectively:

P9 = %0p (22 )+, ' @
Ve = 2cr { () 1+ o <o+ (2) 1o ;55 |owzm} (19
6

Here, “+" denotes the standard “plus” regularization k21].
A convenient way to get explicit expressions for R**(z,y;€,1; g) is to extract them from the kernels B*(u,v)
describing the evolution equations for the light-ray operators [14,15,12,13]

doo—‘l B*(u,v)0,(uz,82) 0 < 1) duds 4.9
rm a(’Z)_/o-/o; (4,v)Op(uz,82) 8(u + v < 1) dudy. (4.9)

Since the definitions of the gluon distributions F#(z,y;t), G*(z,y;t) contain an extra (pz) factor on the right-
hand side, which results in the differentiation 8/8z of the relevant kernel, it is convenient to proceed in two steps.
First, we introduce the auxiliary kernels r**(z,y; £,7; g) directly related by

r(z,y;6,m 9) = /1 /‘ 5z — £(1 - u—0))d(y — v — n(1 ~ u— v)) B®(u,v) 0(u + v < 1) dudv
o Jo

= 1B - /6,9~ 1a/8) (4.10)

to the light-ray evolution kernels B**(u,v). The second step is to get the R-kernels using the relations
Rz, i6,m0) =199, 1i6m9) , ROz pi6me) = gr“(z.v;f,v/;y) (411)
(% (zRG"(z, u;t,my)) =1z, y:6m9) , Ryibmg) =-¢ % 192,y 6 9) (4.12)

Hence, to obtain R9(z,y;,m; 9), we should integrate r%9(z, y; £, 7; g) with respect to z. We fix the integration
ambiguity by the requirement that R99(z,y; £,; 9) vanishes for z > 1. Then

Q 1 [ e - g) di
R¥Gyeme) =1 [ @it me) . (413)

This convention guarantees a simple relation (4.3) to the DGLAP kernels. Explicit expressions for the evolution
kernels and discussion of evolution equations in the singlet case is given in the Appendix (see also ref. [10]).

V. PARTON INTERPRETATION AND MODELS FOR DOUBLE DISTRIBUTIONS

The structure of the integrals relating double distributions with the usual ones

1-z
faas(z) =/o Fa,(z,y)dy (5.1)

[where F(z,y) = F(z,y;t = 0) ] has a simple graphical illustration (see Fig.2a). The DD’s F(z,y) live on the
triangle defined by 0 < z,y,z + y < 1. Integrating F(z,y) over a line parallel to the y-axis, we get f(z). The
reduction formulas and the interpretation of the z-variable of F(z,y) as a fraction of the p* momentum suggests
that the profile of F(z,p) in the z-direction is basically driven by the shape of f (z). On the other hand, the
profile in the y-direction characterizes the spread of momentum induced by the momentum transfer r+. Hence,
the y-dependence of F(z,y) for fixed z should be similar to that of a distribution amplitude (y). By analogy
with, e.g., the pion distribution amplitude @, (y), which is symmetric with respect to the change y +» 1 —y, one
may expect that the distribution of the r-momentum between the two partons described by the same field should
also have some symmetry. However, the symmetry cannot be as simple as y +» 1 — y since the initial p and the
final o = p — r momenta are not treated symmetrically in our description: the variable z specifies the fraction of
the initial momentum p both for the outgoing (zp + yr) and incoming (zp — (1 — y)r) partons. To treat p and
¢ symmetrically, we should interpret z for the returning parton as the fraction of the final hadron momentum
p = p~—r, ie., rewrite its momentum zp —~ (1 — y)r as x(p — r) — (1 — = — y)r. Hence, the symmetry of a double
distribution F{z,y) may be only with respect to the interchange y ++ 1 — z — y (this symmetry was noticed by L.
Mankiewicz [9]).

Another way to make the symmetry between the initial and final hadrons more explicit is to use P=(p+p)/2
and r as the basic momenta rather than p and r (cf. [1,3,9]) writing the momenta of the partons as zP + gr and
zP — (1 — §)r. Then the y & 1 — x — y symmetry corresponds to § ¢ 1 — § symmetry. The variable §j changes in



FIG. 2. a) Integration lines in the (z,y)-plane giving reduction of double distributions F(z,y;t = 0) to usual parton
lensities f(z1) and f(z2). b) Symmetry line y = (1 — z)/2 for double distributions.

he interval z/2 < § < (1 - 2/2). Writing §j a8 § = (1+a)/2, we introduce a new variable o satisfying a symmetric
onstraint —% < a < Z, where £ = 1 —z. The y & 1 — z ~ y symmetry now converts into a ¢ —a symmetry.
“inally, rescaling « as @ = Zf produces the variable § with z-independent limits: —1 < 8 < 1. Written in terms
f z and 8, a modified double distribution F'(z, 8) obeys the reduction formula

= b
T -
2 [ Fends =@ (52)
-1
t is instructive to study some simple models allowing to satisfy this relation. Namely, let us assume that the profile
n B-direction is a universal function g(g) for all z, i.e., take the factorized ansatz

2
1-z

F(z,0) = 1(=)9(8), (5.3)

with g(8) normalized by
1
[ o@as=1. (5.4)

Possible simple choices for g(3) may be 6(8) (no spread in B-direction), %(l—ﬁ’) (characteristic shape for asymptotic
limit of quark distribution amplitudes), 1§(1 — #%)* (asymptotic shape of gluon distribution amplitudes), etc. In
our original variables z,y, the factorized ansatz can be written as
h(z.y)
== 5.5
Fley) = 505t 1@, (5.5)
where h(z,y) is a function symmetric with respect to the interchangey & 1 -z - y. A trivial observation is that
the variable 7 itself is given by a combination [1 — (1 — z — y) — y] symmetric with respect tothey &+ 1 -z —y
transformation. The normalization function h(z) is specified by

1-z
Mo = [ henay. (56)
For the three simple choices mentioned above, the model (5.5) gives
— — 3 2 1—-xz— 2
FOa,3) =8 - 2/21) , FO) = =20 1) | pa) = I ). 6

In a similar way, one can construct ansitze for functions F(z,y;t) involving nonzero ¢ values.

Finally, as one may expect, the y ¢ 1 — = — y symmetry of the double distributions F(z,y) is not affected by
evolution. Indeed, the transformation y — 1 —z —y, n — 1—£ —1 converts the basic kernels B (y—nz/¢,§—0z/€)
into Be(jj ~ fz/€,y — 1z /£), i.e., does not change them since the kernels B®*(u,v) are symmetric: B (u,v) =
B*(v,u). Furthermore, relations between R*(z,y;€,7:g) and r*(z,y; §,7; g) involve only operations acting on z
and £ variables which do not change under y +1—-z—y,n+1-{—-1n.
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VI RELATION TO NONFORWARD DISTRIBUTIONS

The nonforward matrix late process-independent information and, hence, have a quite general
nature. The coefficient of proportionality between pt and r* characterizes the skewedness of matrix elements. The
characteristic feature implied by representations for double distributions (see, e.g., Egs.(3.1}, (3.2)) is the absence of
the ¢-dependence in the DD’s F(z,y) and G(z,y). An alternative way to parametrize nonforward matrix elements
of light-cone operators is to use the ratio { = r*/p* and the total momentum fraction X = z + y¢ as independent
variables. Taking into account that for a lightcone dominated process only one direction for z gives the leading
contribution, one can do the change (rz) = ((pz) directly in our definitions of double distributions. As a result, the
variable y would appear there only in the z + y{ = X combination, where X can be treated as the fotal fraction
of the initial hadron momentum p carried by the active quark. If we require that the light-cone plus component of

Xp X-0)p Xp=Yr (L-X)p=1-Y)r

p a-yp p a-gr
a) b)
FIG. 3. Parton interpretation of nonforward distributions. a) Region X > (. b) Region X < (.

the final hadron momentum (i.e., p* —r*) is positive, then 0 < ¢ < 1. Using the spectral property 0 <z +y < 1 of
double distributions we obtain that the variable X satisfies a similar “parton” constraint 0 < X < 1, Integrating
each particular double distribution Fy 3,,(X — y(,y) over y gives the nonforward parton distributions

2 974 X/
FORI(X) = (X 2 Q) /o Fas(X = 4G, y) dy +6(X < Q) /o Fano(X = 6,5) dy, 6.1)

where { = 1 - ¢. The two components of NFPD'’s correspond to positive (X > () and negative (X < () values of
the fraction X’ = X — ¢ associated with the returning parton. As explained in refs. [4,5], the second component can
be interpreted as the probability amplitude for the initial hadron with momentum p to split into the final hadron
with momentum (1~ {)p and the two-parton state with total momentum r = (p shared by the partons in fractions
Yr and (1 —Y)r, where Y = X/( (see Fig.3).

Note, that if we use the definitions (3.6),(3.7) for the gluon DD’s, the nonforward gluon distribution F¢(X)
is obtained by integrating zFy(z,y)|z=x—_y¢. To simplify notations, it will be implied below that for gluons
F(X - y¢,y) in Eq.(6.1) corresponds to (X — y()Fy(X - y(,y).

The basic distinction between double distributions F(z,y) and nonforward distributions F¢(X) is that NFPD's
explicitly depend on the skewedness parameter (. They form families of functions .7-'2‘ 29(X) whose shape changes
when ¢ is changed. The fact that the functions F¢(X) corresponding to different {’s are obtained by integrating
the same double distribution F(z,y) imposes essential restrictions on possible shapes of F¢(X) and on how they
change with changing ¢. The relation between NFPD's and DD’s has a simple graphical illustration on the “DD-
life” triangle defined by 0 < z,y,2 +y < 1 (see Fig.4 ). To get F¢(X), one should integrate F(z,y) over y along a
straight line specified by z = X — (y. Fixing some value of ¢, one deals with a set of parallel lines corresponding to
different values of X. Evidently, each such line intersects the z-axis at z = X. The upper limit of the y-integration
is determined by intersection of this line either with the line z + y = 1 (this happens if X > () or with the y-axis
(if X < ¢). The line corresponding to X = ( separates the triangle into two parts generating two components of
the nonforward parton distribution. In the forward case, when ¢ = 0, there is only one component, and the usual
parton densities f(z) are produced by integrating F(z,y) along the vertical lines  =const (see Fig.2). In case
when X > (, looking at the integration line for the nonforward parton distribution F¢(X) one can see (Fig.4b) that
it is inside the space between the integration lines giving the usual parton densities f(X) and f(X') corresponding
to the momentum fractions X, X' = X - ¢ of the initial and final parton. Assuming a monotonic decrease of
the double distribution F{(z,y) in the z-direction and a universal profile in the y-direction, one may expect that
Fe(X) is larger than f(X) but smaller than f(X'). Inequalities between forward and nonforward distributions
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FIG. 4. Relation b double distributions F(zx,y) and nonforward parton distributions F¢(X). a) Integration lines
three cases: X1 > ¢, X = ¢ and X3 < (. b,c) Comparison of integration lines for the nonforward parton distribution
(X) and usual parton densities f(X), f(X') (shown in 2b) and f(X), f(X32) with X3 = X'/{ (shown in 2c).

e recently discussed in refs. [17,25,26]. They are based on the application of the Cauchy-Schwartz inequality to
e nonforward distributions written generically as (H(y'); X'p| H(p); Xp}):

I S°(H(p): X'p, S| H(p): Xp, S < 3 (H(D), X'p, S|H(p); X'p,5) Y (H(p); Xp,S'| H(p); Xp, '), (6.2)
5 S 4

aere | H(p); Xp, S} describes the probability amplitude that the hadron with momentum p converts into a parton
th momentum Xp and spectators S. The forward matrix elements are identified with the usual parton densities

‘é(H(p);Xp,SIH(p);Xp,S) = f(X). (63)

stice that the hadron momentum in the second forward matrix element is p' = {p, hence the argument of the
levant parton density is X'/(:

S(HE) X', S|HE); X'p,S) = S (HW) X'9 T, S| HE): X' [3,8) = f(X'[0). (6.4)

s 5

3 a result, one obtains (compare [25,26])

1]F 1 arnd
Fe(X) < SXVX/C) < LX) + F(XUC)) (6.5)

. other words, the functions involved in the bound for F¢(X) are f(X) and f(X,) where the fraction X2 = X'/
larger than X' {25,26]. One can see that X; is given exactly by the x-value of the intersection point in which
e th)egration line z = X — (y giving the nonforward distribution F¢(X) crosses the boundary line z +y = 1 (see
ig.4c). .

It is clear that the whole construction makes sense only if X' > 0 (or X > (). If X’ < 0, the nonforward
stribution corresponds to matrix elements (H(p'); Xp, X'p, S| H(p),S) which have no obvious relation to the
jual parton densities. Furthermore, in our graph of Fig.4a, the left end of the line z = X — (y in this case
srresponds to r = 0, where the usual parton densities are infinite, and the inequalities become trivial. In fact,
iey are trivial even for the border point X = (. Another deficiency of the Cauchy-Schwartz-type inequalities is
1at they do not give the lower bound for nonforward distributions though our graphical interpretation suggests
1at Fe(X) for X > ( is larger than f(X) if the z-dependence of the double distribution F(z,y) along the lines
= kZ is monotonic.

To develop intuition about possibles shapes of nonforward distributions, it is instructive to derive the NFPD's
srresponding to three simple models specified in the previous section. In particular, for the FO)(z,y) = 6(y -
/2) f(x) ansatz we get

Yy IX 2¢/2) (X (/2
0= G250 () 9
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i.e., NFPD’s for non-zero ¢ are obtained from the forward distribution f(X) = F¢(X) by a shift and rescaling.
Using the relations

X-¢/2
1-¢/2 °’

between our nonforward distributions and Ji’s ofi-forward parton distributions (OFPD’s) H(z, £;t) [1,3], one can
see that the delta-function ansatz gives the simplest

HO (2,6t = 0) = f(2)

model for OFPD’s, in which the latter do not reveal any §-dependence.

It is worth noting that the MIT bag model calculation [27] did produce a set of OFPD's which are almost
independent of £. An evident interpretation is that the model constructed in ref. [27) strongly suppresses the
redistribution of the momentum transfer among the constituents which results in a very narrow spread of F(z,y)
in the y-direction. Even if such a picture is physically correct for a low normalization point Qo ~ 500 MeV,
evolution to higher values Q 2 1 GeV widens the y-profile of F(z,y) and evolved OFPD's would change their
shape with £, as was explicitly demonstrated by a numerical calculation by Belitsky et al. [16].

The evolution of nonforward distributions F¢(X |Q) waa recently studied in refs. {11,17,18]. As a starting
condition, the authors assume that, at some low scale Qo, the nonforward distributions ¥¢ (X {Q) for ali { have the
same universal shape coinciding with that of the usual (forward) densities f(X, Qo). This assumption corresponds
to the ansatz F(z,y| Qo) = 6(y) f(z | Qo) with double distribution being nonzero on the z-axis only. This ansatz is
not realistic, since it has no symmetry with respect to the y ¢+ (1—z—y) interchange. However, evolution equations
are applicable to any distribution and, just due to its asymmetric profile, this unrealistic double distribution has a
very distinctive evolution pattern reflecting the restoration of the y ¢ 1 -z —y symmetry. Namely, the asymptotic
functions F(z,y| Q — o) are y ¢ {1~z —y) symmetric. In particular, both in pure gluodynamics and in QCD, we
have F,(z,y|Q — 00) ~ y?(1 —z - y)? (see Ref. [4] and the Appendix). Hence, one may expect that the evolition
of Fy(z,y| Q) shifts its crest towards the y = 2/2 line and also makes the y-shape of the double distribution wider.
To see whether the results of Refs. [11,17) reflect this expectation, we introduce a general model with a narrow
y-dependence: F,fo) (z,y) = 8(y — k2)f(z) (in what follows, it will be referred to as the “k-delta ansatz”). This
double distribution is concentrated on the y = kZ line and gives

FOOX) = % (f-_:cc ) o

H(z,&8) = (1= /D FX) ; &= = 2—fz 1)

for nonforward distributions. In case of two other models, simple analytic results can be obtained only if we
specify a model for f(z). For the “valence quark”-oriented ansatz F)(z,y), the following choice of a normalized
distribution

T'(5-a)

1@ = si—a

z7%(1 - z)° (6.9)
is (a) close to phenomenological valence quark distributions and (b) produces a simple expression for the double
distribution since the denominator (1 — z)? factor in Eq.(6.9) is canceled. As a result, the integral in Eq.(6.1) is
easily performed and we get :

2-a
FOx) = 46_’0 {x"“((a)? ~AX - +B(X 20) (x_-_(c_) (¢axX + 2xé)} . (6.10)

1-

Resulting curves for }él)(x ) with a = 0.5 and { = 0.05,0.1,0.2,0.4 are shown in Fig.5. A characteristic feature
of each curve is & maximum located close to the relevant border point X = ( and slightly shifted to the left from
it. Note that both the functions }'él)(X ) and their derivatives (d/dX )f?)(x ) are continuous at X = (. The
latter property is secured by the fact that F()(z, yg vanishes at the upper corner z = 0,y = 1. The (1 — z)*
denominator factor for the “gluon-oriented” ansatz F(2)(z, y) is canceled if one takes the model f () ~z~°(1-z)°
which, fortunately, is also consistent with the z — 1 behavior of the phenomenological gluon distributions. It is
well known [2,4] that the values of nonforward distributions F¢(X) taken at the border point X = ( determine
imaginary parts of DVCS and hard electroproduction amplitudes. An interesting question is the relation between
the usual distributions f(¢) and the values F¢(¢) of nonforward distributions at the border point. It is easy to
calculate that for the k = 1/2 delta ansatz F(®(z,y) this ratio is given by

1
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FIG. 5. Nonforward parton distributions .rg”(x ) for different values of the skewedness { = 0.05 (thin line), {( = 0.1
lashed line), ¢ = 0.2 (dash-dotted line) and { = 0.4 (full line) in the “valence quark oriented” model specified by Eq.(7.5)
ra=0.5.

2-¢)
RO = 7 = Jee—9) 6.11)
Q) =F"10/1) T= <70 (
. is larger than 1 for any monotonically descreasing function f(z), i.e., the nonforward distribution F¢(¢) in this
ase is larger than £(¢). In the small-¢ limit, R®(() is completely determined by the small-z behavior of f(z),
nd the expression for R)(¢) simplifies to

RO car ® L)) (6.12)

Q)

lence, if f(z) has a purely powerlike behavior f(z) ~ z~* for small =, then RO(¢ - 0) =2°(1 + O(()), ie., for
mall ¢, the ratio of the nonforward distribution F¢(¢) and the usual parton density f(¢) is practically constant,
leviating from the ¢ = 0 limiting value by O(() terms only. The limiting value in this case is 1.41 for a = 0.5 and
.23 (1.15) for a = 0.3 (a = 0.2). However, if f(z) is a sum of two different powerlike terms Az~® + Bz~" or if it
ontains logarithms, e.g., f(z) ~ z~*In(1/z) for small z, then the {-dependence is more pronounced. In the latter
ase

In2
(0) o il 6.13
RO =2 (14 o075 (613)
wnd there is a visible deviation from the limiting ¢ — 0 value for all accessible {: on the In(1/¢) scale, the
;-dependence of the ratio R®)(() cannot be neglected even for { ~ 107%.

For a general k-delta model F:o) (z,y) = 8(y — kE) f(z), the ratio F¢(¢)/ f(() for small { can be approximated by
£(C(1 = K))/ £(¢) which again gives a (-independent constant (1~ k)~ for a purely powerlike function f(z) ~z~%
while the In(1/z)-factor would modify the constant b?' {1 +In(1 - k)/In(].

If one uses the “valence quark”-oriented ansatz F)(z,y) with a simple powerlike behavior f(z) ~ = for small
z, the ratio is given by

1
(1-¢*(1-a/2)(1-af3)’

Just like in the previous example, the nonforward distribution F¢(() is larger than () for all positive a. For
small ¢, the ratio tends to 1/(1 ~ a/2)(1 ~ a/3), eg., to 1.6 for a = 0.5 which is the usual choice for valence
quark distributions (for comparison, taking ¢ = 0.3 (a = 0.4) gives 1.3 (1.44) for RW(¢ — 0)). For small g, this
result can be translated into RO(C — 0) & €54/8 & f(e8/8¢)/ £(C), which coincides with the ratio RI(( — 0)
for the modified narrow ansatz F:o)(z,y) = §(y — kz)f(x) with k ~ 0.56. Hence, for F¢(() the widening of the
y-distribution can be approximated by a narrow distribution shifted from y = %/2 upwards to the y = kZ line.
Again, a logarithm In(1/z) in f(z) at small z would induce a visible ¢-dependence for the R()(() ratio even for
very small (.

Switching to the “gluon-oriented” ansatz F(®(z,y) with a purely power behavior f(z) ~ z™* for small z, we
obtain a similar expression

ROy = FQOIHQ) = (6.14)
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1
A= -a/3( —a/A1-a/5) 615)

RO = FPWO110) =

which is close to (2.17)® for small a. To approximate this result by the delta ansatz F,fo) (z,y), one should take
k % 0.54. The effective shift upward is smaller in this case because F(?)(z,y) is more narrow in the y-direction
than F()(z,y).

Choosing a, we should take into account that the nonforward gluon distribution FZ(X) reduces to X f(X) in
the ¢ — 0 limit [4,5]. Hence, f(¢) in the above formulas should be understood as (f,((). Now, if we make an
old-fashioned assumption that X f,(X) tends to a constant as X — 0, then a = 0 and R(¥(() tends to 1 at small
¢, i.e., the nonforward distribution .‘Fg (¢) coincides in the small-¢ limit with its forward counterpart {f,(¢). To
get a more realistic gluon distribution X f,(X) growing at small X one should use a positive parameter a. Taking
a = 0.3, we get R®(¢ = 0) = 1.27, and R®(¢ - 0) & 1.17 (1.39) for a = 0.2 (a = 0.4)).

These estimates for the ratio F¢(X | Q)/X f,(X | Q) are close to those obtained in refs. {11,17]. where the nonfor-
ward distributions ]-'(’ (X | Q) at high normalization point Q were constructed by applying evolution equations to an
initial low normalization point Qo ansatz ]-'g (X | Qo) which was assumed to have a universal (-independent shape
coinciding with the usual distribution X f,(X | Qo). In particular, Martin and Ryskin, considered the evolution of
the gluon NFPD in pure gluodynamics. They took Q3 = 1.5 GeV? (two other choices Q) = 0.4 GeV? and Qf =4
GeV? were also considered) and then evolved F#(X [Q) to higher Q? values Q? = 4,20, and 100 GeV?. They
found that R(10-%) »s 1.3 for Q? = 100 GeV?, which corresponds to @ = 0.3 in our F(* model. This value is close
to those used in phenomenological parametrizations of the gluon distributions. It should be also noted that the
results for R(¢) obtained in Ref. [17] have a nonnegligible (-dependence. This feature can be expected since the
GRV gluon distribution {28} which they use can be rather well approximated at Q* = 4 GeV? by a simple formula

zfCRY (2,Q* = 4GeV?) m %x‘“'sln(llz)

which works with 10% accuracy for z ranging from 10! to 1075, In the pure gluodynamics approximation used
in Ref. [17), its shape does not drastically change when evolved either to Q* = 1.5 GeV? or to Q* = 20 and 100
GeV2.

As discussed above, the assumption that the nonforward distributions }-C’(X | Qo) have a universal {-independent.

shape corresponds to the ansatz F,Eo) (z,¥]Qo) = 8(y) f(z}Qo), i.e., to the k-delta ansatz with the vanishing slope
k = 0. Modeling the evolved double distributions by a K-delta ansatz with nonzero k, we expect that, due to the
restoration of the y — 1 — —y symmetry, the effective slope parameter k should increase with Q2. Namely, for the
k-delta ansatz, the ratio of the nonforward distribution .7-'('(X } and the forward parton distribution f(z) = X f,(X)
is given by

FUX) _ f(X - kCE/(1 — Q)
XX T a-kRIx

Taking f(z) = }2~°%In(1/z) and the Q*-dependent slope k(Q?) = 0.3;0.4;0.48 for Q* = 4;20 and 100 GeV2,
respectively, we were able to reproduce the results of Ref. [17} for a wide range of  parameters: { = 10~%,1073,10~4
and 10~5. The relevant curves, coinciding with those of Ref. [17] within a few per cent accuracy, are shown in
Fig.6. Hence, the increase of the ratio R(X,¢) with Q% observed in Refs. [17,11] basically reflects the shift of the

R(X,Q) = (6.16)

02 04 06 08 I T 02 04 06 08 ) T 02 64 06 08 T 62 04 06 08
a) b) ) d)
FIG. 6. Ratio FZ(X)/X f;(X) vs. log,o(X/() as obtained from the model given by Eq. (6.16) for a) ¢ = 1072,b)
¢ =10"%¢) { =107* and d) ¢ = 10~® with k = 0.48 (solid lines), k = 0.4 (long-dashed lines) and k = 0.30 (short-dashed

lines).

gluon double distribution from the z axis y = 0 towards the symmetry line y = £/2. This effect, being an artifact
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\e initial conditions, plays the dominant role up to Q? ~ 100 GeV2. as argued above, the (-dependence of the
) may be traced to the fact that the gluon distribution zf§?V (z) differs from a simple power z—°.

nce the assumption F¢(X | Qo) = f(X | Qo) is equivalent to the ansatz F(z,y|Qo) = &(y)f(x} Qo) which is
symmetric with respect to the y — (1 — z — y) interchange, one should avoid using it as a starting condition
wolution. As explained earlier, a more realistic set of nonforward distributions

FOxq = X 28D (X4 (©.17)

nerated by the F9(z,y| Qo) = 6(y — £/2) f(x) ansatz for the double distribution corresponding to skewedness-
pendent set of Ji’s off-forward distributions. Comparing these two sets, one may be tempted to argue that for
emely small ¢ considered in Ref. [17), {/2 terms in Eq.(6.17) are inessential. Of course, (/2 can be neglected
n subtracted from 1. However, for the X-values close to the border point X = ¢, the shift by (/2 produces
»le changes for functions having the X~ behavior with a ~ 0.3. In the case of the ansatz (6.17), the ratio
Q) = f(’ (X 1Q)/X £,(X | Q) differs from 1 for all Q. For small ¢, the difference is significant only for X
eto (.

Then a narrow double distribution has its crest on the y = Z/2 line from the very start, there are no effects
to the shift of the crest, and the Q-evolution of R(X,(|Q) in the region X > ( reflects only the widening of
double distribution in the y-direction and the change of its profile in the z-direction. As we have seen, the
ening of the double distribution changes the effective slope k by a small amount only. Hence, for small { one
use the approximate formula

FX1Qkar = (X = (/D fs(X - ¢/2]1Q) (6.18)

evolved distributions as well. In other words, the ratio R(X,¢]Q) for X > ¢ and small { can be estimated from
tting results for the usual gluon density f(X) = X f,(X | Q).
jomparing the formula (6.18) with the relation (6.7) between our nonforward and Ji's off-forward distributions,
can conclude that Eq.(6.18) is equivalent to a statement that at small £ and £ > £ one can neglect the -
endence of the off-forward distributions H(%;£). Again, such a statement is only nontrivial if £ ~ £. To analyze
accuracy of eq.(6.18), we will construct an expansion of H(%;£) in powers of £. To this end, it is convenient to
the parton picture based on modified double distribution F(z,a) in which the plus component of the parton
menta is measured in units of that of the average hadron momentum P = (p + p')/2. The parton momenta

xPH1+o) r/2 xP-(1-o) r/2 (X+E) P (x-E) P

P4r/2 P-r2  (I+E)P (I1-E) P

a) b)
FIG. 7. Parton picture in terms of a) modified double distributions and b) off-forward parton distributions H{(%,¢).

m are zP + (1 + a)r/2 and zP — (1 — a)r/2 with o changing between —% and Z. Defining r* /P = 2¢, one
1ains the description in terms of the off-forward parton distributions H(Z;£) [1,3]. The parton momenta are now
'+r/2 and £P — r/2. In the region Z > ¢, the OFPD’s are obtained from F(z,a) by the integral
(1-2)/(1-¢) _
HEOle = [ F(z - ¢a,0)da. (6.19)
~(1-2)/(1+€)

ing the @ — —a symmetry of F(z,a), it is easy to see from this expression that the off-forward parton distribu-
ns H(%;£) are even functions of £:

H(%;€) = H(Z;-¢). (6.20)
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This result was originally obtained by X. Ji {25] with the help of a different technique. Expanding the rhs of
Eq.(6.19) in powers of £, we get

© 2k r(1-2) 0“;,(5 a)
H(%:8) = ——/ ——7—a*da. (6.21)
(%:€) Z(:’ (2k)! _1-2) B33k .
The lowest two terms give
N i /“-" 8F(z,a) , 6.22
HEZ8 = @)+ 3 - alda+.... (6.22)

where f(Z) is the forward distribution. Hence, for small £, the corrections are formally O(£?), i.e., they look very
small. However, if f(z) has a singular behavior like z=°, then

82F(%,a) a(l+a) . .

o @ @)
and the relative suppression of the first correction is O(£? /#?) i.e., the corrections are tiny for all Z except for the
region % ~ £ where the correction has no parametric smallness. Nevertheless, even in this region it is suppressed
numerically, because the o moment is rather small for a distribution concentrated in the small-a region. This
discussion shows that the formula (6.18) is not just an automatic consequence of the O(£?) nature of the first
nonvanishing correction.

yr (I-y)r

FIG. 8. Meson-like contribution.

So far we assumed in our models that DD’s are finite everywhere on the “life triangle”. Consider, however, a
situation when the partons emerge from a meson-like state (or glueball/pomeron in the gluon case) exchanged in
the ¢ channel. In this case, the partons just share the plus comp t of the tum transfer r: information
about the magnitude of the initial hadron momentum is lost if the exchanged particle can be described by a pole
propagator ~ 1/(t —m3,). Hence, the meson-exchange contribution to a double distribution is proportional to 6(z)
or its derivatives, e.g.:

F¥(2,) ~ d(z) 220 (6.23)
my, ~¢

where pp(y) is the distribution amplitude of the meson M. This contribution to the nonforward distribution is

nonzero only in the 0 < X < { region:

M(x) ~ EMXID g0 < x < 6.24)

FHx) ~ P00 <X <0). (
At the beginning, we described the nonforward matrix element of a quark operator by two fu.uction.s Fe(z,y) and
F3(z,y) corresponding to positive-z and negative-z parts of the general Fourier representation. Since z =0 for
a meson-exchange contribution, it makes sense to treat it as a third independent compon.ent, i.e., to parametrize
the nonforward matrix element by the sum F* @ F® @ FM. All three components contribute to the nonforward
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stributions in the 0 < X < ¢ region. However, the é(z) terms do not contribute to the nonforward distributions

the X > ¢ region and to the usual parton densities f(z). For this reason, the §(z) terms, if they exist, would
ad to violation of sum rules (like energy-momentum sum rule) for the usual parton densities.

Note that if the meson DA o(y) does not vanish at the end-points, the nonforward distribution does not vanish
, X = 0 (the off-forward parton distributions H (%;€) in this case are discontinuous at r = +£). As explained in
f. {5], pQCD factorization for DVCS and other hard electroproduction processes fails in such a situation, because
! the 1/X factors (1/(Z % £) factors if OFPD formalism is used) contained in hard amplitudes. It should be
\entioned that a nearly discontinuous behavior of OFPD’s for Z = + ¢ was obtained in the chiral soliton model
19]. Formally, the evolution to sufficiently high p results in the functions vanishing at the end-point X = 0. A
on-trivial question, however, is whether evolution starts at all in a situation when pQCD factorization fails.

VIL. SUMMARY

In this paper, we duscussed the formalism of double distributions. We treated them as the starting objects in
\arametrization of nonforward matrix elements. An alternative description in terms of nonforward or off-forward
\arton distributions was obtained by an appropriate integration of the relevant DD’s. Incorporating spectral and
ymmetry properties of double distributions, we proposed simple models producing self-consistent sets of non-
orward distributions F¢(X) and discussed their (-dependence and relation to usual (forward) parton densities.
Jsing a qualitative picture of the evolution of double distributions, we were able to explain and model the basic
eatures of the evolution pattern of nonforward distributions observed in numerical evolution studies [17]. In the
\ppendix, we present the set of evolution equations for double distributions in the singlet case and discuss their
wnalytic solution. Work on numerical evolution of the nonforward distributions corresponding to realistic ansitze
'6.17) is in progress {30]. Another interesting problem for a future investigation is a numerical evolution of double
{istributions.
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APPENDIX A: EVOLUTION EQUATIONS FOR THE SINGLET CASE

As described in Sec. IV, the evolution kernels for double distributions can be conveniently obtained from the
light-ray evolution kernels Bo%(u,v). For the parton helicity averaged case, the latter were originally obtained in
Refs. [14,15]. Here we present them in the form given in Ref. {4):

599 0) = 220p (1+ 8is/el + 800/l ~ F00)) (A1)
B(u,v) = 2Cr (2 + 6(u)5(u)) , (A2)
B(y,v) = ‘%N, (1+4uww—u—v), (A3)

B9 (u,v) = ?N; (4(1 +3uv—u-v)+ %6(@6(1}) + {6(u) [% —4(v) /01 %’:’_] +{ue u}}) . (A4)

As usual, §o = 11— %N s i8 the lowest coefficient of the QCD B-function. Evolution kernels for the parton helicity-
sensitive case are given by {12,13]
AB99(y,v) = B9y, v) (A5)

AB®(u,0) = 2205 (6(u)6(u) —2), (A6)
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AB%C(y,v) = "7' Ny(Q-u-v), (A7)
AB%C(y,v) = B9 (u,v) - 12 "7 N.uv. (A8)

At one loop, ARQQ(:I:& .6,m9) = R99(z,y; €, 7; ), and this kernel was already displayed in Eq. (4.6). Other
kernels, including the RSC(z,y; §,1; g) kernel originally obtained in Ref. (4], are given by

ARSC(z,y.6,m9) = %Nc%{‘l 8(0 < =/€ < min{y/n, §/7}) + 6(1 — =/)é(y - n)% (A9)
80 < 2/E< V@O (15,6 _ o + Lotase — g/ - 2601 - fa |
# B0 VIO [Litase—ypn) + Ltest -9/ - 280 - <1000 =) [ r-‘u}

ROC(z,y;€,m,9) = ARSO(z,5;6,n,9) + 12 % N, % (v — nz/E)(G — 7z/€) (0 < z/¢ < min{y/n,§/8}),  (A10)

8ro9eigmo) = 20 {2 (1 2) ot s+ {12 T +s0-no0s <o}, ww

z
R = 20r L2 (1-2) oresums 4 {133} won-we0sasof, am
AR9(e, 33, m5) = 20y L2 (e~ i oy < 1)+ 0616 -9/ 2 )

- 000 <2/ < minly/n, 57D} (A13)

1
RO yime) = ARG 6 mo) +4 20N Foa(L e -22) o0 <ot <mintyingin). (A1)

To find & formal solution of the evolution equations for double distributions, we proposed in Refs. [2,4] to
combine the standard methods used to solve the evolution equations for parton densities and distribution ampli-

tudes. Hence, let us start with taking the moments with respect to z. Utilizing the property Reb(z,y;€,m9) =
Rz /E,y;1,m;:9)/€ we get

d 1
g Fale = ; /; Ry, m; 9)F2(n| ) dn, (A15)
where F2(y| p) is the nth z-moment of F°(z,y|n)
1
Fylp = /o Z"F(z,y|p)dz. (A16)
The kernels R2*(y,7; g) and analogous kernels AR(y,m; g) governing the evolution of G} (1 u) are given by

R3%(y,m9) = ARIC(y,m; 9) = GT‘CF {(!)m [—1— + —1—] oy <)

n n+l n-y
(B [ w2 Law-n -2 [ 1) (A17)
MRSy, me) = 2 {(’fl)+ (i +75)ew<n+ {121} o0 [ -2f ldfz]}, (a19
RES(y,m59) = AR (u,m0) + 1228 N5 {(1—’,)“ (Z-2)owsn+ {130} wo
17



3 e

BRICwm9) = ?N’n_nfl {(%)mo(y <)+ (

n+l1
) oy > n)} , (A20)

R3%(y,m9) = AR (y,m;9) + 4a7'Nf -n:—l{ (%)m (ﬂ - —'i) fy<m+ {z : g}} (A21)

n n+2
" ) “9—' _l_ _ __2_—- ! ntl g n+1
ARy, mig) = 220t {6(11 -y [(n) owsn+ (D) owzalf, (a22)
ooy = 2 0pt Lsw—m+ 2 [ (1) 7\
RS (v,n'g) ==*Cr {6(v N+ [(n) by<m+| 5 ITEDIRE (A23)
From Eqs. (A20), (A22) one can derive the following reduction formulas for the nondiagonal kernels:
8
EAR?G(V, mg) = -AV9(y,nig), (A24)
. [
lim nARZ(w,m; 9) = —WAVG"(u,n; 9. (A25)

se same relations connect the nondiagonal kernels RG9, R9€ with the BL-type kernels VO9(y, n;9), VeG(y,n; 9)
ven in ref. [5]. To understand their structure, one should realize that constructing the nondiagonal QG and GQ
rnels, one faces mismatching (zp) factors which in the pure BL case are converted into derivatives with respect

"
1t is straightforward to check that all the kernels Ra®(y,n; 9) (and AR2*(y,m; g)) have the property
Ry, m 9)waln) = R (1, v 9)waly),

here wn(y) = (yj)™*'. Hence, the eigenfunctions of the evolution equations are orthogonal with the weight
o) = (UF)"*1, i.e., they are proportional to the Gegenbauer polynomials C.','“/ ?(y — ), see [24,31] and Refs.
2-35] where the general algorithm was applied to the evolution of flavor-singlet distribution amplitudes.

Expanding the moment functions F2(y | 4s) over the Gegenbauer polynomials C;'H/ fy-9)
00
Fawlm = i)™ Y Fawoy ™ w-9) (A26)
k=0

¢ get the evolution equation for the expansion coeflicients
d a
pFa(e) = 71 3 TR Fue), (az1)
H Ly
there T are the eigenvalues of the kernels R(y,; g) related to the elements 4% of the usual flavor-singlet
nomalous dimension matrix

1
99 - ,9Q @6 _nq¢ 69 1ea oo ,6G . (A28)

k= Tntk s Dok =gk Lok = Z0ngk

ind similarly for the helicity-sensitive quantities AT25. Namely,

Q9 _ A.QQ 1 1 pasg]

WSAR = Ol W rD ) ()

66 _ _ 1 _ 1 N+1l &

W= |-gRTy - wrae R T |t 2 (430)
j=1
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A’yGG = -2N, |- 2 — 4 Nz+:l |+ é- (A31)

N N+2(N+3) "z J 2
N?4+3N+4 N34+ 3N +4
cq QG
W =Crgrnwsy W CMENI I+ IE Y’ (A32)
N(N +3) 1

GQ _ QG _ )

Al =Cryrnmsy AW TNMETIE 9 (A33)

Let us consider first two simplified situations. In the quark nonsinglet case, the evolution is governed (in helicity-
averaged case) by 7,?f,, alone:

FYS(Im) = (™ 3 A Gy — ) loglu/ AT, (A34)
k=0

Since 'y(?q = 0 while all the anomalous dimensions g,?,o with N > 1 are negative, only Fg' S(y| ) survives in the
asymptotic limit g — oo while all the moments FNS(y| p) with n > 1 evolve to zero values. Hence, in the formal
B — oo limit, we have

FNS(z,y|p = 00) ~ §(z)y§

i.e., in each of its variables, the limiting function FNS(z,y|p - oo) acquires the characteristic asymptotic form
dictated by the nature of the variable: §(z) is specific for the distribution functions [36,37], while the yj-form is the
asymptotic shape for the lowest-twist two-body distribution amplitudes [23,24]. For the nonforward distribution
of a valence quark ¢ this gives

FEHX o 00) = BN (L~ X0/,

where N, is the number of the valence g-quarks in the hadron.

Another example is the evolution of the gluon distribution in pure gluodynamics which is governed by '7,?&
with fo = 11N, /3. Note that the lowest local operator in this case corresponds to n = 1. Furthermore, in pure
gluodynamics, ¥FC vanishes while ¢ < 0 if N > 1. This means that in the g — oo limit we have

2F9(z,y| p— o00) = 306(x)(v§)’
for the double distribution which results in
FE(Xp—00) =30X* (1~ X/02 /¢

for the nonforward distribution. In the formulas above, the total momentum carried by the gluons (in pure
gluodynamics!) was normalized to unity.

In QCD, we should take into account the effects due to quark gluon mixing. Diagonalizing Eq.(A27), we obtain
two multiplicatively renormalizable combinations

Fi =F3 + ot F5, {A35)
where {omitting the nk indices)
1
ot = 75 (76‘0 — 4991 \/(700 — 4992 4 4760700) . (A36)

Their evolution is governed by the anomalous dimensions

7t = % ('r“ +799 £ /(799 - 109)2 + 47""7"") . (A37)

In particular, 7}, = 0 and aj, = 1 which means that Fy = FQ+ F§ does not evolve: the total momentum carried
by the partons is conserved. Another multiplicatively renormalizable combination involving quo and F{3 is

- C
Fw=1‘-ﬁ"ﬁiﬂ-
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vanishes in the g — oo limit, and we have

Ny A 4Cr
Fg(l‘-’ o0) —+ 4Cr+ Ny~

Fﬁ(ﬂ—'m)—*m H

1ce all the combinations F,_*,, with n + k > 2 vanish in the g — oo limit, we obtain

4ACp

£FO e,y 09) - 0 gl B 5 TP, s 00) - 0 gl @D

4Cr + Ny

PO/ A 2
Fz,y|p - 00) —+ 304CF+N!5(1)(W) .

terms of nonforward distributions this is equivalent to

2
FoX a0+ 02 X (12

Cr+N, G\ ¢
Ny X X\ (2Xx
f?(X|p—)oo)—)60—-—40F+NlZi(l—?> (T—l) .

ote that both F@(¢) and FE(C) vanish in the s — oo limit.
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